The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer's disease
Corresponding Author
David A. Drachman
- [email protected]
- +1-508-856-3031 | Fax: +1-508-334-3029
UMass Medical School, Worcester, MA, USA
Corresponding author. Tel.: +1-508-856-3031; Fax: +1-508-334-3029. [email protected]Search for more papers by this authorCorresponding Author
David A. Drachman
- [email protected]
- +1-508-856-3031 | Fax: +1-508-334-3029
UMass Medical School, Worcester, MA, USA
Corresponding author. Tel.: +1-508-856-3031; Fax: +1-508-334-3029. [email protected]Search for more papers by this authorAbstract
The “amyloid hypothesis” has dominated Alzheimer research for more than 20 years, and proposes that amyloid is the toxic cause of neural/synaptic damage and dementia. If correct, decreasing the formation or removing amyloid should be therapeutic. Despite discrepancies in the proposed mechanism, and failed clinical trials, amyloid continues to be considered the cause of a degenerative cascade. Alternative hypotheses must explain three features: (i) why amyloid toxicity is not the etiology of Alzheimer's disease (AD), (ii) what alternative mechanisms cause the degeneration and dementia of AD, and (iii) why increased amyloid accumulates in the brain in AD. We propose that AD, which occurs in elderly, already vulnerable brains, with multiple age-related changes, is precipitated by impaired microvascular function, resulting primarily from decreased Notch-related angiogenesis. With impaired microvasculature, a lack of vascular endothelial-derived trophic factors and decreased cerebral blood flow cause the atrophy of neural structures. Therapeutic strategies should focus on supporting normal angiogenesis.
References
- [1]J.A. Hardy, G.A. Higgins. Alzheimer's disease: the amyloid cascade hypothesis. Science. 256: 1992; 184–185
- [2]J. Constantinidis. Hypothesis regarding amyloid and zinc in the pathogenesis of Alzheimer disease: potential for preventive intervention. Alzheimer Dis Assoc Disord. 5: 1991; 31–35
- [3]T.L. Spires, B.T. Hyman. Neuronal structure is altered by amyloid plaques. Rev Neurosci. 15: 2004; 267–278
- [4]D.J. Selkoe. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 192: 2008; 106–113
- [5]C. Haass, D.J. Selkoe. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 8: 2007; 101–112
- [6]D.J. Selkoe. The therapeutics of Alzheimer's disease: where we stand and where we are heading. Ann Neurol. 74: 2013; 328–336
- [7]K.L. Bick. The early story of Alzheimer disease. R.D. Terry, R. Katzman, K.L. Bick, S.S. Sisodia. Alzheimer disease. 2nd ed.. 1999; Lippincott Williams & Wilkins,: Philadelphia; 1–9
- [8]C. Schwab, M. Hosokawa, P.L. McGeer. Transgenic mice overexpressing amyloid beta protein are an incomplete model of Alzheimer disease. Exp Neurol. 188: 2004; 52–64
- [9]K. Duff, F. Suleman. Transgenic mouse models of Alzheimer's disease: how useful have they been for therapeutic development? Brief Funct Genomic Proteomic. 3: 2004; 47–59
- [10]W. Xia, S.T. Wong, E. Hanlon, P. Morin. γ-Secretase modulator in Alzheimer's disease: shifting the end. J Alzheimers Dis. 31: 2012; 685–696
- [11]GE Berrios. The history of Alzheimer's disease. 2004. Available at: http://www.wellcomecollection.org. Accessed January 12, 2014.
- [12]R. Katzman. The prevalence and malignancy of Alzheimer disease: a major killer [editorial]. Arch Neurol. 33: 1976; 217–218
- [13]P. Divry. Etude histo-clinique des plaques séniles. J Belg Neurol Psychiat. 27: 1927; 643–657
- [14]G.G. Glenner. Current concepts of the formation and composition of amyloid. Ann Clin Lab Sci. 5: 1975; 257–263
- [15]G.G. Glenner, C.W. Wong. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120: 1984; 885–890
- [16]A Goate, MC Chartier-Harlin, M Mullan, J Brown, L Crawford F Fidani, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 349: 1991; 704–706
- [17]M.C. Chartier-Harlin, F. Crawford, H. Houlden, A. Warren, D. Hughes, L. Fidani, et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 353: 1991; 844–846
- [18]R. Sherrington, E.I. Rogaev, Y. Liang, E.A. Rogaeva, G. Levesque, M. Ikeda, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 375: 1995; 754–760
- [19]P. St George-Hyslop, J. Haines, E. Rogaev, M. Mortilla, G. Vaula, M. Pericak-Vance, et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14. Nat Genet. 2: 1992; 330–334
- [20]J. Hardy, D.J. Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 297: 2002; 353–356
- [21]R. Areza-Fegyveres, S. Rosemberg, R.M. Castro, C.S. Porto, V.S. Bahia, P. Caramelli, et al. Dementia pugilistica with clinical features of Alzheimer's disease. Arq Neuropsiquiatr. 65: 2007; 830–833
- [22]K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 274: 1996; 99–102
- [23]M.J. West, G. Bach, A. Soderman, J.L. Jensen. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice. Neurobiol Aging. 30: 2009; 1756–1776
- [24]W.E. Klunk, J.C. Price, C.A. Mathis, N.D. Tsopelas, B.J. Lopresti, S.K. Ziolko, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. 55: 2004; 306–319
- [25]A.S. Fleisher, K. Chen, X. Liu, A. Roontiva, P. Thiyyagura, N. Ayutyanont, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 68: 2011; 1404–1411
- [26]J.O. Rinne, D.J. Brooks, M.N. Rossor, N.C. Fox, R. Bullock, W.E. Klunk, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9: 2010; 363–372
- [27]J.A. Nicoll, D. Wilkinson, C. Holmes, P. Steart, H. Markham, R.O. Weller. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 9: 2003; 448–452
- [28]R.E. Tanzi, L. Bertram. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 120: 2005; 545–555
- [29]R.D. Terry, E. Masliah, L.A. Hansen. The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations. Terry RD, R. Katzman, K.L. Bick, S.S. Sisodia. Alzheimer disease. 2nd ed.. 1999;; Lippincott Williams & Wilkins: Philadelphia; 187–206
- [30]T. Gomez-Isla, R. Hollister, H. West, S. Mui, J.H. Growdon, R.C. Petersen, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol. 41: 1997; 17–24
- [31]D.A. Drachman. Case records of the Massachusetts General Hospital: weekly clinicopathological exercises: case 12-1999: a 67-year-old man with three years of dementia. N Engl J Med. 340: 1999; 1269–1277
- [32]T. Tokuda, S. Ikeda, N. Yanagisawa, Y. Ihara, G.G. Glenner. Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid beta-protein and tau protein. Acta Neuropathol. 82: 1991; 280–285
- [33]J.L. Price, D.W. McKeel Jr., V.D. Buckles, C.M. Roe, C. Xiong, M. Grundman, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 30: 2009; 1026–1036
- [34]D.G. Davis, F.A. Schmitt, D.R. Wekstein, W.R. Markesbery. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol. 58: 1999; 376–388
- [35]A.B. Balasubramanian, C.H. Kawas, C.B. Peltz, R. Brookmeyer, M.M. Corrada. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology. 79: 2012; 915–921
- [36]C.C. Rowe, S. Ng, U. Ackermann, S.J. Gong, K. Pike, G. Savage, et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 68: 2007; 1718–1725
- [37]K.M. Rodrigue, K.M. Kennedy, M.D. Devous Sr., J.R. Rieck, A.C. Hebrank, R. Diaz-Arrastia, et al. β-Amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology. 78: 2012; 387–395
- [38]Z.S. Khachaturian. Diagnosis of Alzheimer's disease. Arch Neurol. 42: 1985; 1097–1105
- [39]L.E. Middleton, L.T. Grinberg, B. Miller, C. Kawas, K. Yaffe. Neuropathologic features associated with Alzheimer disease diagnosis: age matters. Neurology. 77: 2011; 1737–1744
- [40]C. Reitz. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012: 2012; 369808
- [41]A. Imhof, E. Kovari, A. von Gunten, G. Gold, C.B. Rivara, F.R. Herrmann, et al. Morphological substrates of cognitive decline in nonagenarians and centenarians: a new paradigm? J Neurol Sci. 257: 2007; 72–79
- [42]Y.E. Geda. Mild cognitive impairment in older adults. Curr Psychiatry Rep. 14: 2012; 320–327
- [43]B. Van Broeck, C. Van Broeckhoven, S. Kumar-Singh. Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegener Dis. 4: 2007; 349–365
- [44]M.S. Wolfe. When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40: talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8: 2007; 136–140
- [45]R.C. Petersen. Mild cognitive impairment: current research and clinical implications. Semin Neurol. 27: 2007; 22–31
- [46]W.P. Esler, E.R. Stimson, J.M. Jennings, H.V. Vinters, J.R. Ghilardi, J.P. Lee, et al. Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry. 39: 2000; 6288–6295
- [47]E.L. Schaeffer, M. Figueiro, W.F. Gattaz. Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics (Sao Paulo). 66: 2011; 45–54
- [48]M.C. Irizarry, M. McNamara, K. Fedorchak, K. Hsiao, B.T. Hyman. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 56: 1997; 965–973
- [49]S. Gilman, M. Koller, R.S. Black, L. Jenkins, S.G. Griffith, N.C. Fox, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 64: 2005; 1553–1562
- [50]A. Serrano-Pozo, C.M. William, I. Ferrer, E. Uro-Coste, M.B. Delisle, C.A. Maurage, et al. Beneficial effect of human anti-amyloid-beta active immunization on neurite morphology and tau pathology. Brain. 133: 2010; 1312–1327
- [51]T. Tabira. Immunization therapy for Alzheimer disease: a comprehensive review of active immunization strategies. Tohoku J Exp Med. 220: 2010; 95–106
- [52]C. Holmes, D. Boche, D. Wilkinson, G. Yadegarfar, V. Hopkins, A. Bayer, et al. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 372: 2008; 216–223
- [53]N.C. Fox, R.S. Black, S. Gilman, M.N. Rossor, S.G. Griffith, L. Jenkins, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 64: 2005; 1563–1572
- [54]P.S. Aisen, S. Gauthier, S.H. Ferris, D. Saumier, D. Haine, D. Garceau, et al. Tramiprosate in mild-to-moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci. 7: 2011; 102–111
- [55]G.A. Kerchner, A.L. Boxer. Bapineuzumab. Expert Opin Biol Ther. 10: 2010; 1121–1130
- [56]S. Salomone, F. Caraci, G.M. Leggio, J. Fedotova, F. Drago. New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. Br J Clin Pharmacol. 73: 2012; 504–517
- [57]N. Herrmann, S.A. Chau, I. Kircanski, K.L. Lanctot. Current and emerging drug treatment options for Alzheimer's disease: a systematic review. Drugs. 71: 2011; 2031–2065
- [58]F. Panza, V. Frisardi, V. Solfrizzi, B.P. Imbimbo, G. Logroscino, A. Santamato, et al. Interacting with γ-secretase for treating Alzheimer's disease: from inhibition to modulation. Curr Med Chem. 18: 2011; 5430–5447
- [59]B.P. Imbimbo, G.A. Giardina. γ-Secretase inhibitors and modulators for the treatment of Alzheimer's disease: disappointments and hopes. Curr Top Med Chem. 11: 2011; 1555–1570
- [60]R.S. Doody, R. Raman, M. Farlow, T. Iwatsubo, B. Vellas, S. Joffe, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med. 369: 2013; 341–350
- [61]T. den Heijer, F. van der Lijn, A. Ikram, P.J. Koudstaal, A. van der Lugt, G.P. Krestin, et al. Vascular risk factors, apolipoprotein E, and hippocampal decline on magnetic resonance imaging over a 10-year follow-up. Alzheimers Dement. 8: 2012; 417–425
- [62]H. Braak, E. Braak. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82: 1991; 239–259
- [63]D.A. Drachman. Aging of the brain, entropy, and Alzheimer disease. Neurology. 67: 2006; 1340–1352
- [64]S.W. Pimplikar. Reassessing the amyloid cascade hypothesis of Alzheimer's disease. Int J Biochem Cell Biol. 41: 2009; 1261–1268
- [65]S.W. Pimplikar, R.A. Nixon, N.K. Robakis, J. Shen, L.H. Tsai. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J Neurosci. 30: 2010; 14946–14954
- [66]K. Herrup. Reimagining Alzheimer's disease: an age-based hypothesis. J Neurosci. 30: 2010; 16755–16762
- [67]A.M. Fjell, K.B. Walhovd. Neuroimaging results impose new views on Alzheimer's disease: the role of amyloid revised. Mol Neurobiol. 45: 2012; 153–172
- [68]R.A. Armstrong. The pathogenesis of Alzheimer's disease: a reevaluation of the “amyloid cascade hypothesis.”. Int J Alzheimers Dis. 2011: 2011; 630865
- [69]E.J. Masoro. Are age-associated diseases an integral part of aging?. E.J. Masoro, S.N. Austad. Handbook of the biology of aging. 6th ed.. 2006; Elsevier Academic Press: Burlington, MA; 43–62
- [70]T.A. Salthouse. Selective review of cognitive aging. J Int Neuropsychol Soc. 16: 2010; 54–760
- [71]T.A. Salthouse. Adult cognition. 1982; Springer-Verlag: New York
10.1007/978-1-4613-9484-6 Google Scholar
- [72]W.J. Hoyer, P. Verhaeghen. Memory aging. J.E.I. Birren, K.W. Schaie. Handbook of the psychology of aging. 6th ed.. 2006; Elsevier Academic Press: Burlington, MA; 209–224
10.1016/B978-012101264-9/50013-6 Google Scholar
- [73]B. Pakkenberg, D. Pelvig, L. Marner, M.J. Bundgaard, H.J. Gundersen, J.R. Nyengaard, et al. Aging and the human neocortex. Exp Gerontol. 38: 2003; 95–99
- [74]L. Marner, J.R. Nyengaard, Y. Tang, B. Pakkenberg. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol. 462: 2003; 144–152
- [75]L. Hayflick. Intracellular determinants of cell aging. Mech Ageing Dev. 28: 1984; 177–185
- [76]L. Hayflick. The cell biology of aging. Clin Geriatr Med. 1: 1985; 15–27
- [77]I.A. Rodriguez-Brenes, C.S. Peskin. Quantitative theory of telomere length regulation and cellular senescence. Proc Natl Acad Sci U S A. 107: 2010; 5387–5392
- [78]J.C. Conover, B.A. Shook. Aging of the subventricular zone neural stem cell niche. Aging Dis. 2: 2011; 49–63
- [79]L. Liu, T.A. Rando. Aging of stem cells: intrinsic changes and environmental influences. E.J. Masoro, S.N. Austad. Handbook of the biology of aging. 7th ed.. 2011; Elsevier: Amsterdam; 141–161
- [80]M.S. Lustgarten, F.L. Muller, H. Van Remmen. An objective appraisal of the free radical theory of aging. E.J. Masoro, S.N. Austad. Handbook of the biology of aging. 7th ed.. 2011; Elsevier: Amsterdam; 177–202
10.1016/B978-0-12-378638-8.00008-7 Google Scholar
- [81]J.C. de la Torre. The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond. Neurodegener Dis. 7: 2010; 116–121
- [82]V.T. Marchesi. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 25: 2011; 5–13
- [83]K.A. Jellinger. Pathology and pathogenesis of vascular cognitive impairment: a critical update. Frontiers Aging Neurosci. 5: 2013; 17
- [84]G.C. Roman, T.K. Tatemichi, T. Erkinjuntti, J.L. Cummings, J.C. Masdeu, J.H. Garcia, et al. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN international workshop. Neurology. 43: 1993; 250–260
- [85]A. Ott, R.P. Stolk, A. Hofman, F. van Harskamp, D.E. Grobbee, M.M. Breteler. Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia. 39: 1996; 1392–1397
- [86]A. Hofman, A. Ott, M.M. Breteler, M.L. Bots, A.J. Slooter, F. van Harskamp, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam study. Lancet. 349: 1997; 151–154
- [87]M.M. Breteler. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging. 21: 2000; 153–160
- [88]S. Debette, S. Seshadri, A. Beiser, R. Au, J.J. Himali, C. Palumbo, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 77: 2011; 461–468
- [89]I. Skoog, D. Gustafson. Update on hypertension and Alzheimer's disease. Neurol Res. 28: 2006; 605–611
- [90]L. Buee, P.R. Hof, C. Bouras, A. Delacourte, D.P. Perl, J.H. Morrison, et al. Pathological alterations of the cerebral microvasculature in Alzheimer's disease and related dementing disorders. Acta Neuropathol. 87: 1994; 469–480
- [91]L. Buee, P.R. Hof, A. Delacourte. Brain microvascular changes in Alzheimer's disease and other dementias. Ann N Y Acad Sci. 826: 1997; 7–24
- [92]W.R. Brown, C.R. Thore. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 37: 2011; 56–74
- [93]B.P. Austin, V.A. Nair, T.B. Meier, G. Xu, H.A. Rowley, C.M. Carlsson, et al. Effects of hypoperfusion in Alzheimer's disease. J Alzheimers Dis. 26: 2011; 123–133
- [94]M. Mazza, G. Marano, G. Traversi, P. Bria, S. Mazza. Primary cerebral blood flow deficiency and Alzheimer's disease: shadows and lights. J Alzheimers Dis. 23: 2011; 375–389
- [95]Q. Shen, S.K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 304: 2004; 1338–1340
- [96]W. Li, P. Li, Q. Hua, J. Hou, J. Wang, H. Du, et al. The impact of paracrine signaling in brain microvascular endothelial cells on the survival of neurons. Brain Res. 1287: 2009; 28–38
10.1016/j.brainres.2009.06.057 Google Scholar
- [97]S. Guo, W.J. Kim, J. Lok, S.R. Lee, E. Besancon, B.H. Luo, et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci U S A. 105: 2008; 7582–7587
- [98]F.M. Faraci. Cerebral vascular dysfunction with aging. E.J. Masoro, S.N. Austad. Handbook of the biology of aging. 2011; Academic Press Elsevier: Burlington, MA; 405–419
10.1016/B978-0-12-378638-8.00019-1 Google Scholar
- [99]O. Berezovska, C. Jack, A. Deng, N. Gastineau, G.W. Rebeck, B.T. Hyman. Notch1 and amyloid precursor protein are competitive substrates for presenilin1-dependent γ-secretase cleavage. J Biol Chem. 276: 2001; 30018–30023
- [100]T.L. Bailey, C.B. Rivara, A.B. Rocher, P.R. Hof. The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease. Neurol Res. 26: 2004; 573–578
- [101]A. Presente, R.S. Boyles, C.N. Serway, J.S. de Belle, A.J. Andres. Notch is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A. 101: 2004; 1764–1768
- [102]Y. Wang, S.L. Chan, L. Miele, P.J. Yao, J. Mackes, D.K. Ingram, et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A. 101: 2004; 9458–9462
- [103]W. Song, P. Nadeau, M. Yuan, X. Yang, J. Shen, B.A. Yankner. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci U S A. 96: 1999; 6959–6963
- [104]O. Berezovska, M.Q. Xia, B.T. Hyman. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol. 57: 1998; 738–745
- [105]S. Hitoshi, T. Alexson, V. Tropepe, D. Donoviel, A.J. Elia, J.S. Nye, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16: 2002; 846–858
- [106]A.P. Sagare, R.D. Bell, B.V. Zlokovic. Neurovascular defects and faulty amyloid-beta vascular clearance in Alzheimer's disease. J Alzheimers Dis, 2012, 33 Suppl 1:S87-100
- [107]J. Zheng, H. Watanabe, M. Wines-Samuelson, H. Zhao, T. Gridley, R. Kopan, et al. Conditional deletion of Notch1 and Notch2 genes in excitatory neurons of postnatal forebrain does not cause neurodegeneration or reduction of Notch mRNAs and proteins. J Biol Chem. 287: 2012; 20356–20368
- [108]M.A. Lopez-Toledano, M.L. Shelanski. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci. 24: 2004; 5439–5444
- [109]G.M. Bishop, S.R. Robinson. Physiological roles of amyloid-beta and implications for its removal in Alzheimer's disease. Drugs Aging. 21: 2004; 621–630
- [110]L.D. Plant, J.P. Boyle, I.F. Smith, C. Peers, H.A. Pearson. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci. 23: 2003; 5531–5535
- [111]K.G. Mawuenyega, W. Sigurdson, V. Ovod, L. Munsell, T. Kasten, J.C. Morris, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 330: 2010; 1774
- [112]B.V. Zlokovic. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28: 2005; 202–208
- [113]J.A. Driver, A. Beiser, R. Au, B.E. Kreger, G.L. Splansky, T. Kurth, et al. Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study. Br Med J. 344: 2012; e1442
- [114]M. Musicco, F. Adorni, S. Di Santo, F. Prinelli, C. Pettenati, C. Caltagirone, et al. Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 81: 2013; 322–328
- [115]J. Folkman. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 6: 2007; 273–286